三、工艺优势
1、烟气系统
来自锻钢烟气经烟道引风机直接进入脱硫塔。脱硫塔以空塔喷淋结构。设计空速小(4.0m/s),塔压力降小(≤600Pa),脱硫集中除尘、脱硫、排烟气于一体,烟气升至塔**进入烟囱排入大气。脱硫塔制作完毕喷砂处理后,环氧树脂防腐6遍,塔内部件主要是喷嘴和防雾器,均为304不锈钢材质。当脱硫泵出现故障时,脱硫暂停反应,烟气可通过烟囱排入大气。
2、脱硫塔SO2吸收系统
烟气进入脱硫塔向上升起与向下喷淋的脱硫塔以逆流式洗涤,气液充分接触吸收SO2。脱硫塔采用喷嘴式空塔喷淋,由于喷嘴的雾化作用,分裂成无数小直径的液滴,其总表面积增大数千倍,使气液得以充分接触,气液相接触面积越大,两相传质热反应,效率越高。因此化工生产中诸多单元操作中多采用喷淋塔结构,起到高效、节能、造价低等优点。脱硫塔内碱液雾化吸收SO2及粉尘,生成Na2SO3,同时消耗了NaOH和Na2SO3。脱硫液排出塔外进入再生池与Ca(OH) 2反应,再生出钠离子并补入Na2SO3(或NaOH),经循环脱硫泵打入脱硫循环吸收SO2。
在脱硫塔**部装有除雾器,经除雾器折流板碰冲作用,烟气携带的烟尘和其他水滴、固体颗粒被除雾器捕获分离。除雾器设置定期冲洗装置,防止除雾器堵塞。
3、脱硫产物处理
脱硫产物终是石膏浆,具体为CaSO3、CaSO4还有部分被氧化的Na2SO4及粉尘。有潜水泥浆泵从沉淀池排出处理好,经自然蒸发晾干。由于石膏浆中含有固体杂质,影响石膏的质量,所以一般以抛弃法为高。排出沉淀池浆液可经水力旋流器,稠厚器增浓提固后,再排至渣场处理。
4、关于二次污染的解决
以钠钙双碱法烟气脱硫可解决单一纳碱脱硫的二次污染问题。钠钙双碱法是以纳碱吸收SO2,其产物用石灰乳再生出纳碱继续使用,因钠钙双碱法能节省碱耗,又杜绝二次污染问题。有少量的Na2SO4不能够再生被带入石膏浆液中,经固液分离,分离的固体残渣进行回收堆放再做他用。溶液流回再生池继续使用,因此不会产生二次污染。
5、方案的特点
以NaOH(Na2CO3)脱硫,脱硫液中主要为NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。钠基吸收液对SO2反应速度快,故有较小的液气比,达到较高的脱硫效率,一般≥90%。
脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P≤600Pa。
6、吸收SO2效率及主要影响因素
PH值:PH值高,SO2吸收速率大,脱硫效率高,同时PH值高,结垢几率小,避免吸收剂表面纯化。
温度:温度低有利于气液传质,溶解SO2,但温度低影响反应速度,所以脱硫剂的温度不是一个独立的不变因素,取决于进气的烟气温度。
石灰粒度及纯度:要求石灰纯度≥95%,粒度控制Pc200~300目内。
液浆浓度:控制在10~15%。
下面着重谈几点发生塔堵后的处理措施
(1)做好气体入塔前的净化,气体入塔前要洗涤除尘和静电除焦,并加强气水分离,防止、粉煤灰等杂物带入脱硫系统。
(2)认真查找堵塔的根本原因,是设备设计安装问题的,找机会进行技术改造,比如脱硫塔在填料的装填和选用上,宜按三层装填,每层高度5-6米,填料总高15-18米,填料以散装聚丙烯¢50-70㎜为主,下段填料宜选大规格以防堵;气液分布器、再分布器、除沫器等部件设计应合理,气液分布面要适当
填料托架多为驼峰板,各企业或多或少都发生过驼峰堵塞,严重时驼峰槽被堵满,不得不停车扒填料清理,建议将驼峰板改为格子板;氧化再生槽内应设1-2层分布板,孔板的作用是使气液混合物通过孔板时再经混合搅动,以利再生效率提高,孔径过大,混合搅动作用减弱;保证检修质量,在塔内填料扒出后,应对塔内进行一次全面检查,发现问题及时处理。
(3)严格控制工艺指标,做好再生槽硫泡沫的浮选和溢流,再生压力(一般在0.40-0.45MPa),以及液位要稳定,防止大幅度波动而将沉淀泛起带入塔内;控制好再生温度,再生温度过高则副反应加快,产生副盐多,副盐结晶,造成堵塔.
(4)保证足够的循环量和喷淋密度,使附在填料表面的积硫得到冲刷,减量生产,不宜调节循环量,应以降低溶液总碱度为手段。重视熔硫回收及加工,熔硫残液要经逐级沉淀、过滤、冷却、氧化并将杂质清除后再返回到系统。
(5)选用质量过硬的催化剂,东狮牌888催化剂。由于其特殊的化学结构而具有较强的吸氧载氧能力,在脱硫过程中,不断地释放出具有很强活性的原子态氧,能迅速将H2S和部分**硫转化为单质硫,从而大大提高脱硫效率,脱除**硫可达50%以上,氧化再生时析出的硫颗粒大,易分离回收,使脱硫液粘度降低,悬浮硫减少,溶液清亮。
另外,888催化剂不但能吸附氧,活化氧,还能形成多硫化物,多硫化合物被再生时析出硫,以致溶液中的悬浮硫逐渐降低,填料上粘附着的硫也逐渐松懈下来,故具有一定的清洗塔的作用。
(6)对塔堵后,阻力上升,出塔气体出现带液现象的处理。据笔者多年的操作和管理经验,一方面可加大循环量来冲塔,另一方面可在贪液中加入一定量的植物油,以消除塔内沉积在填料上的硫泡及积硫,一般植物油一次加入量在200-300mL为宜,加入量过多,则在塔阻下降后,脱硫效率会有所降低,主要原因是植物油是高分子**化合物,是一种消泡物质,从而影响再生系统单质硫的浮选,导致溶液再生效果不佳,但会在一两天后转入正常。
需特别注意的是,在加植物油来清洗塔期间,硫泡会大量增多,宜加强再生槽硫泡的浮选,保证正常溢流,同时要加强熔硫回收工作。
一、工艺特点
钙钠双碱法是先用钠碱性吸收液进行烟气脱硫,然后再用石灰粉再生脱硫液,由于整个反应过程是液气相之间进行,避免了系统结垢问题,而且吸收速率高,液气比低,吸收剂利用率高,投资费用省,运行成本低。
1、以NaOH(Na2CO3)脱硫,脱硫液中主要为NaOH(Na2CO3)水溶液,在循环过程中对水泵、管道、设备缓解腐蚀、冲刷及堵塞,便于设备运行和维护。
2、钠基吸收液对SO2反应速度快,故有较小的液气比,达到较高的脱硫效率,一般≥90%。
3、脱硫剂的再生及脱硫沉淀均发生于塔体避免塔内堵塞和磨损,提高了运行的可靠性,降低了运行成本。
4、以空塔喷淋为脱硫塔结构,运行可靠性高,事故发生率小,塔阻力低,△P≤600Pa。
二、工艺原理
1、反应原理
SO2吸收反应:Na2CO3+SO2→Na2SO3+CO2↑
吸收剂再生反应:CaO+H2O→Ca(OH) 2
Ca(OH) 2+Na2SO3+H2O→2NaOH+CaSO3+H2O
2、工艺流程
采用锻钢炉的烟气经换热降温至≤200℃,经烟道从塔底进入脱硫塔。在脱硫塔内布置若干层数十支喷嘴,喷出细微液滴雾化均布于脱硫塔溶积内,烟气与喷淋脱硫液进行充分汽液混合接触,使烟气中SO2和灰尘被脱硫液充分吸收、反应,达到脱尘除SO2的目的。
经脱硫洗涤后的净烟气经塔**除雾器脱水,经脱硫塔上部进入烟囱排入大气。脱硫循环液经塔内气液接触除SO2后,经塔底管道流入沉淀池在此将灰尘沉淀下来,清液经上部溢进入反应再生池,在池内与石灰乳液制备槽引来的石灰乳进行再生反应,再生液流入泵前循环槽补入Na2CO3,由泵打入脱硫塔**脱除SO2循环使用。
其中再生产出的CaSO3及烟气中过剩氧生成的CaSO4于沉淀池中沉淀分离。
脱硫泵中的应用
脱硫浆液循环泵是脱硫系统中继换热器、增压风机后的大型设备,通常采用离心式,它直接从塔底部抽取浆液进行循环,是脱硫工艺中流量、使用条件为苛刻的泵,腐蚀和磨蚀常常导致其失效。其特性主要有:
(1)强磨蚀性
脱硫塔底部的浆液含有大量的固体颗粒,主要是飞灰、脱硫介质颗粒,粒度一般为0~400µm、90%以上为20~60µm、浓度为5%~28%(质量比)、这些固体颗粒(特别是Al2O3、SiO2颗粒)具有很强的磨蚀性
(2)强腐蚀性
在典型的石灰石(石灰)-石膏法脱硫工艺中,一般塔底浆液的pH值为5~6,加入脱硫剂后pH值可达6~8.5(循环泵浆液的pH值与脱硫塔的运行条件和脱硫剂的加入点有关);Cl-可富集**过80000mg/L,在低pH值的条件下,将产生强烈的腐蚀性。
(3)气蚀性
在脱硫系统中,循环泵输送的浆液中往往含有一定量的气体。实际上,离心循环泵输送的浆液为气固液多相流,固相对泵性能的影响是连续的、均匀的,而气相对泵的影响远比固相复杂且更难预测。当泵输送的液体中含有气体时泵的流量、扬程、效率均有所下降,含气量越大,效率下降越快。
随着含气量的增加,泵出现额外的噪声振动,可导致泵轴、轴承及密封的损坏。泵吸入口处和叶片背面等处聚集气体会导致流阻阻力增大甚至断流,继而使工况恶化,必须气蚀量增加,气体密度小,比容大,可压缩性大,流变性强,离心力小,转换能量性能差是引起泵工况恶化的主要原因。试验表明,当液体中的气量(体积比)达到3%左右时,泵的性能将出现徒降,当入口气体达20%~30%时,泵完全断流。
离心泵允许含气量(体积比)极限小于5%。
高分子复合材料现场应用的主要优点是:常温操作,避免由于焊补等传统工艺引起的热应力变形,也避免了对零部件的二次损伤等;另外施工过程简单,修复工艺可现场操作或设备局部拆装修复;铭泽环保材料的可塑性好,本身具有较好的耐磨性及抗冲刷能力,是解决该类问题理想的应用技术。